
© 2025 Hound Technology, Inc. All rights reserved. February 14 2025

Debug Production with
OpenTelemetry
A Primer for the Full-Stack
Java/Spring Engineer

2© 2025 Hound Technology, Inc. All rights reserved. February 14 2025

Ken Rimple
Senior Developer Relations Advocate
Honeycomb
TODO HANDLES HERE

3© 2025 Hound Technology, Inc. All rights reserved. February 14 2025

● Full stack engineer
● Java and Spring background
● Angular, React, Next.js and other UI

frameworks
● Argue with the cloud (AWS) and now AI
● Joined Honeycomb in 2024

About me

4© 2025 Hound Technology, Inc. All rights reserved. February 14 2025

How does telemetry become
observability?

5© 2025 Hound Technology, Inc. All rights reserved. February 14 2025

What is Observability?
The ability to understand
the state of a system by
observing its outputs

6© 2025 Hound Technology, Inc. All rights reserved. February 14 2025

Observability Signals

Traces Logs Metrics

“What happened to the
 code, in a directed,
acyclic graph of events”

“Messages sent from
 the code or framework,
usually by logging APIs”

“This many of those
things happened,
aggregated and reported
on a schedule”

7© 2025 Hound Technology, Inc. All rights reserved. February 14 2025

Instrumented
Code DataStore Observabilitytelemetry

Query

Notify

From Code to Observability in three steps

8© 2025 Hound Technology, Inc. All rights reserved. February 14 2025

What is a trace?
● A graph of spans, linked together by their span ids

(trace.span_id = trace.parent_id)

Root Span

9© 2025 Hound Technology, Inc. All rights reserved. February 14 2025

Trace spans (meta.signal_type = trace)

Must contain
● trace.trace_id
● trace.span_id
● trace.parent_id
● Timestamp
● duration_ms
● name

10© 2025 Hound Technology, Inc. All rights reserved. February 14 2025

Log spans (meta.signal_type = log)
Must contain
● body
● trace.span_id
● Timestamp
●
May have
● Trace.parent_id
● trace.trace_id

11© 2025 Hound Technology, Inc. All rights reserved. February 14 2025

Metrics(meta.signal_type = metric)
Must contain
● Timestamp

Unlike trace, log
spans these are
generally
pre-aggregated

12© 2025 Hound Technology, Inc. All rights reserved. February 14 2025

Example: trace with many microservices

Errors

Errors

Log event spans (click to view)

13© 2025 Hound Technology, Inc. All rights reserved. February 14 2025

Example log span event

Click circle - see log span data

14© 2025 Hound Technology, Inc. All rights reserved. February 14 2025

The Observability Core Analysis Loop

Identify your question

Did we isolate values in
dimensions to

understand the source
of the problem?

Search, group, filter
across common

dimensions in telemetry
to find differences

Visualize with telemetry,
find anomalies

15© 2025 Hound Technology, Inc. All rights reserved. February 14 2025

OpenTelemetry SDK Configurations for Java

● OpenTelemetry Java Agent
● Spring Boot Starter

16© 2025 Hound Technology, Inc. All rights reserved. February 14 2025

 Auto instrumentation with the Java Agent
export OTEL_EXPORTER_OTLP_ENDPOINT=https://api.honeycomb.io:443
export OTEL_EXPORTER_OTLP_PROTOCOL=http/protobuf
export OTEL_EXPORTER_OTLP_HEADERS="x-honeycomb-team=${HONEYCOMB_API_KEY}"
export OTEL_SERVICE_NAME="ecommerce-service"

java -javaagent:opentelemetry-javaagent.jar -jar app.jar

● Uses environment variables to configure the agent
● The agent automatically instruments based on a wide range of libraries
● This instrumentation includes traces, logs, and metrics by default
● The instrumentation can be configured on the Java agent with environment

variables, flags, even on individual libraries

https://opentelemetry.io/docs/zero-code/java/agent/disable/#enable-only-specific-instrumentation
https://opentelemetry.io/docs/zero-code/java/agent/disable/#enable-only-specific-instrumentation
https://opentelemetry.io/docs/zero-code/java/agent/disable/#suppressing-specific-agent-instrumentation

17© 2025 Hound Technology, Inc. All rights reserved. February 14 2025

Types of Instrumentation

● Automatic
○ Performed by instrumentation libraries
○ Based on configuration in OpenTelemetry SDKs
○ Varies based on language and framework
○ “Get me started quickly!”

● Manual
○ You add information you care about to your

telemetry

18© 2025 Hound Technology, Inc. All rights reserved. February 14 2025

Why do you need manual instrumentation?

● To measure business objectives
● To capture complex processes
● To handle novel events
● To enrich spans with useful details

19© 2025 Hound Technology, Inc. All rights reserved. February 14 2025

Adding Spans with the OpenTelemetry API
var openTelemetry = GlobalOpenTelemetry.get();

var tracer = openTelemetry.getTracer(“chat-service”);

20© 2025 Hound Technology, Inc. All rights reserved. February 14 2025

Default tracing level for Spring Starter
● Configures less tracing out of the box than the standard Java Otel Agent

approach
● Does not instrument all spring beans…
● Example below: captures the endpoint and then database API call

21© 2025 Hound Technology, Inc. All rights reserved. February 14 2025

Adding Spans with brute force - Aspects
● USE SPARINGLY!!! Can create a lot of spans, spans are the unit of cost
● This example uses AOP Around Advice with a pointcut - too wide, and you get a TON of spans

@Component
@Aspect
public class MethodTracingAspect {
private final Tracer tracer;

 @Autowired
 public MethodTracingAspect(OpenTelemetry openTelemetry) {
 this.tracer = openTelemetry.getTracer("ecommerce-service");
 }

 @Around("execution(* org.rimple.ecommerce.ecommerce_service..*(..))")
 public Object traceMethod(ProceedingJoinPoint pjp) throws Throwable {
 // instrumentation here
 }

22© 2025 Hound Technology, Inc. All rights reserved. February 14 2025

Creating a Span in the Aspect traceMethod
 Span span = tracer.spanBuilder(methodSig.getName())
 .setAttribute("method.name", methodName)
 .startSpan();

 try (Scope scope = span.makeCurrent()) {
 span.setAttribute("method.args", Arrays.toString(pjp.getArgs()));
 Object result = pjp.proceed();
 span.setStatus(StatusCode.OK);
 return result;
 } catch (Throwable t) {
 span.recordException(t);
 span.setStatus(StatusCode.ERROR, "Exception: " + t.getMessage());
 throw t;
 } finally {
 span.end();
 }

23© 2025 Hound Technology, Inc. All rights reserved. February 14 2025

Now, DON’T DO THAT
● Proliferates spans anywhere the pointcut matches
● You want to instrument the novel, not the expected

24© 2025 Hound Technology, Inc. All rights reserved. February 14 2025

Adding spans with @Span annotation
 @WithSpan(value = "updateItemQuantity")
 @PostMapping("/items/{productId}")
 public Cart updateItemQuantity(
 @RequestHeader("X-User-ID") String userId,
 @PathVariable Long productId,
 @RequestBody CartOperationDTO operation) {

 Span currentSpan = Span.current();
 currentSpan.setAttribute(“app.user-id”, userId);
 currentSpan.setAttribute("app.product-id", productId);
 currentSpan.setAttribute("app.product-quantity", operation.getQuantity());
 currentSpan.setAttribute(“app.product-unit-price”,

operation.getUnitPrice());
 return cartService.updateQuantityInCart(
 userId, productId, operation.getQuantity()
);
 }

25© 2025 Hound Technology, Inc. All rights reserved. February 14 2025

Enriching a span with additional information

// from a Spring service bean below the controller
@Transactional
public Cart updateQuantityInCart(
 String userId, Long productId, Integer quantity) {

 // Grab the existing span (from the controller)
 Span span = Span.current();

 ...
if (quantity == 0) {

 cart.getItems().remove(hydratedItem);
 span.setAttribute("app.item.removed", true);
 return cartRepository.save(cart);
 }
 ...
}

26© 2025 Hound Technology, Inc. All rights reserved. February 14 2025

The Spring Boot Starter

● Uses Spring’s configuration,
annotations, etc.

● Works with GraalVM binary
compiled applications

● Can configure in Spring
application configuration files

application.yaml

otel:
 propagators: tracecontext
 resource:
 attributes:
 service:
 name: ecommerce-service
 instrumentation:
 # logback-appender:
 # enabled: false
 # slf4j-simple:
 # enabled: false
 common:
 experimental:
 controller:
 controller-telemetry: enabled

27© 2025 Hound Technology, Inc. All rights reserved. February 14 2025

Spring Boot OpenTelemetry Starter

● Add the relevant otel repository location
● Install the OpenTelemetry BOM
● Add OpenTelemetry Spring Boot starter
● Configure

application.properties|yaml
to taste

application.yaml

otel:
 propagators: tracecontext
 resource:
 attributes:
 service:
 name: ecommerce-service
 instrumentation:
 # logback-appender:
 # enabled: false
 # slf4j-simple:
 # enabled: false
 common:
 experimental:
 controller:
 controller-telemetry: enabled

28© 2025 Hound Technology, Inc. All rights reserved. February 14 2025

Otel JavaAgent -vs- Spring Boot Starter
Approach Pros Cons

OTEL Java Agent ● Good if you don’t own the
source code

● Doesn’t require Spring
● Lots of instrumentation

enabled by default

● Not a native Spring
experience

● Can only run one
JavaAgent at a time

Spring Boot Starter ● Native Spring setup and
management

● Can run on GraalVMs
● No external agent code

● Needs to be built
● Requires coding

changes even to install

29© 2025 Hound Technology, Inc. All rights reserved. February 14 2025

Frontend Observability

© 2025 Hound Technology, Inc. All Rights Reserved.

© 2025 Hound Technology, Inc. All Rights Reserved.

● Install Honeycomb’s OpenTelemetry library wrapper SDK
○ https://github.com/honeycombio/honeycomb-opentelemetry-web
○ Wraps the OpenTelemetry JavaScript SDK
○ Provides lots of helpful telemetry out of the box, including

■ Core Web Vitals
■ Browser Settings
■ Generated browser session IDs
■ Global catch-all error reporting

● Saves a lot of manual configuration, but still can be customized

Instrumenting Browser Applications

3131

https://github.com/honeycombio/honeycomb-opentelemetry-web

© 2025 Hound Technology, Inc. All Rights Reserved.

A simple example

 const sdk = new HoneycombWebSDK({
 serviceName: ‘frontend-web’,
 instrumentations: [
 getWebAutoInstrumentations(),
],
});

sdk.start();

© 2025 Hound Technology, Inc. All Rights Reserved.

Trace Propagation and Network Diagnostics

// configure settings for auto-instrumentation
// (except user-events)
const configDefaults = {
 ignoreNetworkEvents: true,
 propagateTraceHeaderCorsUrls: [/.*/g]
}

© 2025 Hound Technology, Inc. All Rights Reserved.

Applying defaults to instrumentation
 const sdk = new HoneycombWebSDK({

 serviceName: ‘frontend-web’,
 instrumentations: [
 getWebAutoInstrumentations({
 ‘@opentelemetry/instrumentation-fetch’: configDefaults,
 ‘@opentelemetry/instrumentation-document-load’, configDefaults,
 ‘@opentelemetry/instrumentation-xml-http-request’, configDefaults,
 ‘@opentelemetry/instrumentation-user-interaction’, {
 enabled: true, eventNames: [‘click’, ‘submit’, ‘reset’]
 }
 }),
],
});

sdk.start();

© 2025 Hound Technology, Inc. All Rights Reserved.

HTTP API call w/W3C

Propagation Header

(Traceparent)

Service

A full-stack trace with Honeycomb Frontend Observability

Browser

Honeycomb

Telementry sent via OTLP

OTLP
-or-
gRPC

Honeycomb Web SDK
recommended

(OpenTelemetry Wrapper)

Use an
OpenTelemetry

SDK/APIs

Assembles full
trace and

access via UI

36© 2025 Hound Technology, Inc. All rights reserved. February 14 2025

ServiceBrowser OTEL
Collector

OTEL
Collector Honeycomb

Must be visible to
the browser

(Internet)

Collector sends
Honeycomb API
Key

Trace
propagation

uses
W3C

Traceparent
Header

Traces
originate
from the
browser

Uses
generated
session.id

attribute for
session
tracking

Use existing
behind-the-firewall

collectors
for backend

services
Traces sent via OTLP

Sending data to an OpenTelemetry Collector

37© 2025 Hound Technology, Inc. All rights reserved. February 14 2025

See everything. Solve anything.

honeycomb.io

